

Laboratory Diagnosis of Hemoglobinopathies and Thalassemia

Archana M Agarwal, MD

Medical Director, Hematopathology and RBC Laboratory
ARUP Laboratories
Assistant Professor of Pathology
University of Utah Department of Pathology

NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
SCHOOL OF MEDICINE | Department of Pathology

Learning Objectives

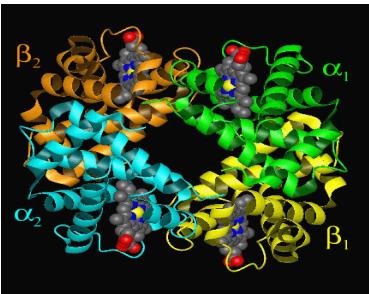
- Understand the pathophysiology of hemoglobinopathies
- Recognize the most important expected test results in hemoglobinopathies and thalassemias
- Understand different testing methodologies
- To be able to direct ordering physician to appropriate tests for these disorders

NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
SCHOOL OF MEDICINE | Department of Pathology

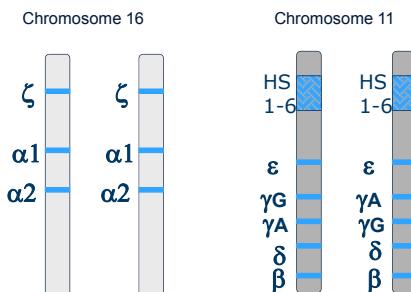
Hemoglobin (Heme+Globin)

- Hemoglobin is a tetramer composed of 4 globin molecules; 2 alpha globins and 2 beta globins or beta like globins
- The alpha globin chain is composed of 141 amino acids and the beta globin chain is composed of 146 amino acids
- Each globin chain also contains one heme molecule



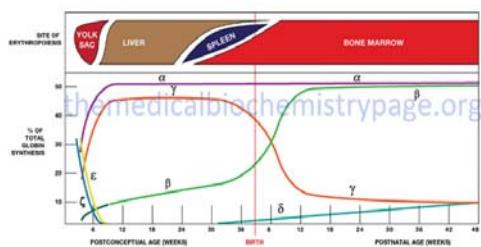
NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
SCHOOL OF MEDICINE | Department of Pathology


Ribbon Diagram of Hemoglobin

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
SCHOOL OF MEDICINE | Department of Pathology


Genetics of Globin Genes

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
SCHOOL OF MEDICINE | Department of Pathology

Hemoglobin-Development Switching

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
SCHOOL OF MEDICINE | Department of Pathology

Normal Adult Human Hemoglobin Composition

Hemoglobin	Structure	% of Normal Adult Hb
Hb A	$\alpha_2\beta_2$	>96%
Hb A2	$\alpha_2\delta_2$	~2.5%
Hb F	$\alpha_2\gamma_2$	<1%

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
SCHOOL OF MEDICINE | Department of Pathology

Hemoglobinopathy (structural)

- Due to mutations in either alpha or beta globin
- **Structural** – substitution, addition or deletion of one or more AAs in the globin chain
 - i.e HbS, HbC, HbE, HbD, HbO, etc...
- Over 1000 identified
 - Majority are benign & discovered incidentally
 - Pathogenic mutations can cause
 - Change in physical properties (sickling, crystalizes)
 - Globin instability (Heinz body formation, lower expression)
 - Altered oxygen affinity

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
SCHOOL OF MEDICINE | Department of Pathology

Thalassemia (quantitative)

- A quantitative decrease in the production of alpha or beta globin chain
 - Large deletions, point mutations, small insertion/deletion that leads to decreased transcription or an unstable transcript
- Beta thalassemia results from mutations in beta gene(s)
 - Pathogenesis a result of the **free alpha subunits**
 - Two classes: $\beta 0$ and $\beta +$
- Alpha thalassemia results from large deletions in the alpha gene(s)
 - Pathogenesis a result of the **free beta subunits**

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
SCHOOL OF MEDICINE | Department of Pathology

Demographics: Thalassemias

- Found most frequently in the Mediterranean, Africa, Western and Southeast Asia, India and Burma
- Distribution parallels that of *Plasmodium falciparum*

Classification & Terminology: Alpha Thalassemia

• Normal	$\alpha\alpha/\alpha\alpha$
• Silent carrier	- $\alpha/\alpha\alpha$
• Minor /trait	- $\alpha/-\alpha$ $--/\alpha\alpha$
• Hb H disease	-- $-\alpha$
• Barts hydrops fetalis	-- $--$

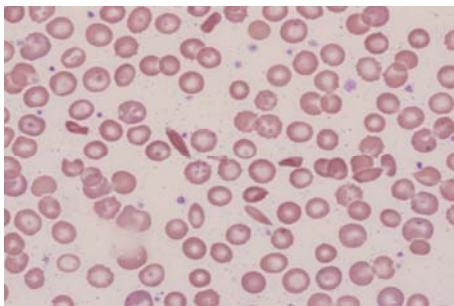
Clinical Presentations of Alpha Thalassemia

- **A single** deletion (α -thalassemia minor)
 - silent carrier state
 - RBC morphology and hemoglobin concentrations are usually normal
- **Two** gene deletion (α -thalassemia minor)
 - Mild microcytic anemia
- **Three** gene deletion (**hemoglobin H disease**)
 - Precipitated β chains—Hb H
 - Patients have moderate anemia, marked microcytosis, splenomegaly, and bone marrow erythroid hyperplasia
- **Four** gene deletion (Hydrops fetalis)
 - Not compatible with life (barring very early intervention)
 - Hemoglobin is primarily comprised of $\gamma 4$ (Bart's), which has a very high affinity for O₂ and is a poor oxygen transporter

Classification & Terminology:

Beta Thalassemia

- Normal β/β
- Minor / trait β/β^0
 β/β^+
- Intermedia β^0/β^+
- Major β^0/β^0
 β^+/β^+


Clinical Significance of β Thalassemia

- Heterozygous asymptomatic
- Homozygous β^0 is a severe disorder associated with transfusion dependent hemolytic anemia
- Homozygous β^+ is a heterogenous disorder
 - severity depending on mutation and % of HbA
 - Increased HbA = decreased severity

Sickle Cell Anemia

- Single nucleotide base change codes for valine instead of glutamic acid at the 6th position from the N-terminus of the β -globin chain
- Affects the shape and deformability of the red blood cell
- Leads to veno-occlusive disease and hemolysis

Peripheral Smear: Sickle Cell Anemia

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
SCHOOL OF MEDICINE | Department of Pathology

Hb E

- 2nd most prevalent hemoglobin variant
 - 30,000,000 world wide
 - 80% in Southeast Asia
- Hb E trait: microcytosis (mean MCV=65fl). No anemia
- Hb E disease: MCV =55-65fl with minimal anemia
- *On HPLC has similar migration pattern as Hb A2

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
SCHOOL OF MEDICINE | Department of Pathology

Hb C

- Mutation in β -globin gene β (6glu->lys)
- Seen predominantly in blacks: Gene prevalence in US black population is 2 to 3%
- May confer malaria resistance
- Often asymptomatic, mild anemia, splenomegaly
- Blood smear shows many target cells, rare intracellular crystals
- Hb S/C disease causes moderate to severe anemia and hemolysis

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
SCHOOL OF MEDICINE | Department of Pathology

Diagnosis

- **Indications for Testing**

- Hemolytic anemia; family history of hemoglobinopathy

- **Laboratory Testing**

- Initial testing – CBC with peripheral smear
 - Polychromasia, spherocytes, schistocytes, sickle cells, Heinz bodies, basophilic stippling; however, the lack of any of these cells does not rule out hemolytic anemia
 - Many hemoglobinopathies can be diagnosed using electrophoretic or high performance liquid chromatography (HPLC) techniques, but some may be missed
 - Genetic testing

NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
HEALTH SCIENCES | Department of Pathology

Importance of CBC

- **Thalassemias**

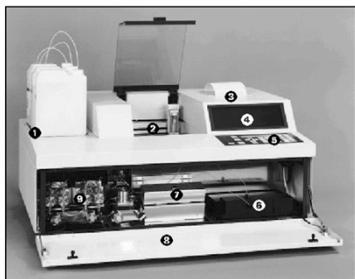
- Red cell indices are critical to diagnosis
 - Hypochromic microcytic anemia
 - MCV (mean corpuscular volume or size of the cell) is key
 - RDW (red cell distribution width) changes are variable
 - Increased RBC count → one distinguishing factor between thalassemias and other microcytic anemias

NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
HEALTH SCIENCES | Department of Pathology

Distinguishing Features Between Iron Deficiency and Thalassemia

- The RBC count in thalassemia is either normal or on higher side of normal
- MCV usually less than 70 in
- The RDW is usually in the normal range
- Low RBC count
- MCV usually more than 70
- RDW is usually more than 17



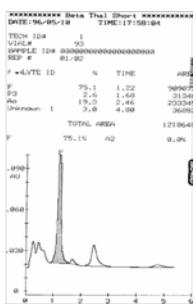
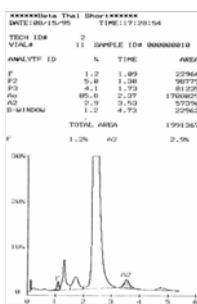
NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
HEALTH SCIENCES | Department of Pathology

Diagnosis of Thalassemias

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
HOSPITAL • MEDICAL | Department of Pathology



High-Pressure Liquid Chromatography

- Cation Exchange
- Analytical cartridge contains negatively charged silica
- Buffers contain Na^+ and K^+ ions
- Hemolysates contain positively charged hemoglobin
- Hemoglobin binds to negatively charged silica at injection
- Na^+ and K^+ concentration increased and separates hemoglobin fragments from silica

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
HOSPITAL • MEDICAL | Department of Pathology

Normal Patient Chromatograms

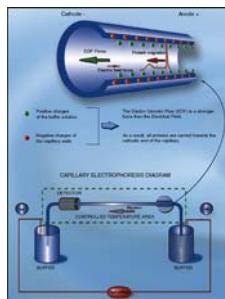
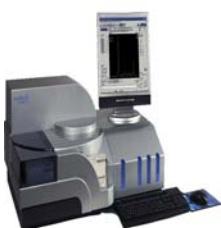
ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
HOSPITAL • MEDICAL | Department of Pathology

Summary of HPLC

Advantages

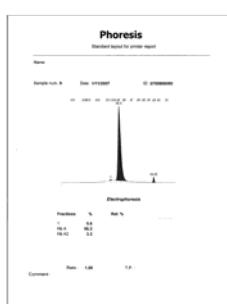
- Fast
- Small amounts of sample
- Accurate quantitation of A2



Disadvantages

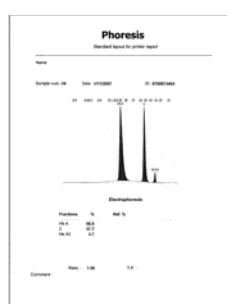
- Hemoglobin E cannot be separated from A2
- Hemoglobin H and Barts elute too quickly from column

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
HOSPITAL • RESEARCH | Department of Pathology

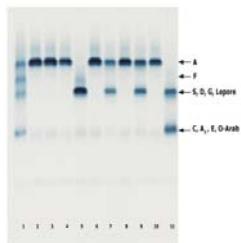

Capillary Electrophoresis

<http://www.sebia-usa.com>


UNIVERSITY OF UTAH
HOSPITAL • RESEARCH | Department of Pathology

Phoresis Reports

<http://www.sebia-usa.com>


ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
HOSPITAL • RESEARCH | Department of Pathology

Alkaline and Acid Gel Electrophoresis

- Electrophoresis (pH 8.4 (alkaline) and pH 6.2 (acid) on agarose gels)
- Slow, labor-intensive, and inaccurate in the quantification of low-concentration Hb variants (e.g., Hb A₂) or in the detection of fast Hb variants (Hb H, Hb Barts)
- The precision and accuracy of Hb A₂ measurements using densitometric scanning of electrophoretic gels is poor, especially when compared with HPLC techniques

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
HOSPITAL • MEDICAL | Department of Pathology

Isoelectric Focusing

- IEF is an electrophoretic technique with excellent resolution
- IEF is an equilibrium process in which Hb migrates in a pH gradient to a position of 0 net charge
- The Hb migration order of IEF is the same as that of **alkaline electrophoresis** with better resolution

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
HOSPITAL • MEDICAL | Department of Pathology

Molecular Analysis

- Alpha thalassemia
 - Multiplex ligation dependent probe amplification (MLPA) and multiplex PCR
 - Alpha globin sequencing
- Beta thalassemia
 - Beta globin sequencing
 - The test examines the complete beta globin coding sequence, the splice sites and other intronic regions known to harbor mutations, the proximal promoter region, and the 5' and 3'UTR regions.
 - Clinical sensitivity is up to 97% based on the ethnicity
 - Beta globin del/dup testing by MLPA

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
HOSPITAL • MEDICAL | Department of Pathology

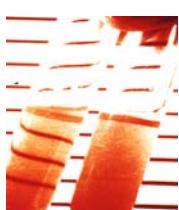
α-Thalassemia Diagnosis

- Hb gel/HPLC migration patterns
 - Not helpful for α-Thalassemia, unless β4 (Hb H) and γ4 (Hb Bart's) are present
- Genetic analysis
 - MLPA: will identify all deletions and duplications
 - Multiplex PCR for 7 common deletions-only 7 common deletion
 - Alpha globin sequencing
 - PCR amplification followed by bidirectional sequencing of the complete protein coding sequence with exon/intron boundaries, proximal promoter region, 5' and 3' untranslated regions, and polyadenylation signal
 - Only useful in 5-10% of cases where alpha thal is due to point mutation

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

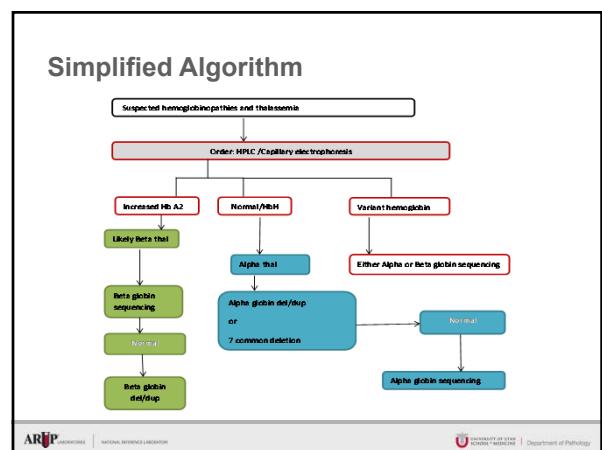
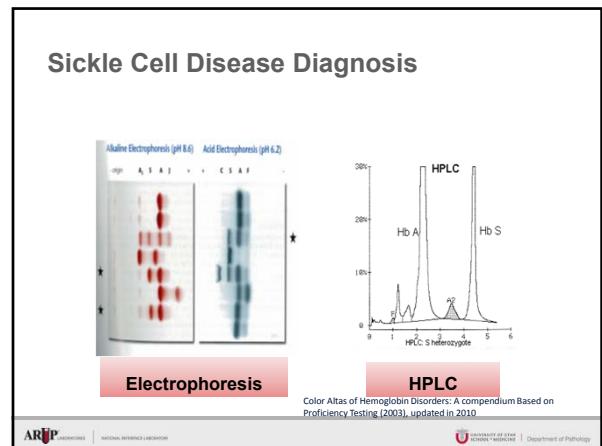
UNIVERSITY OF UTAH
HOSPITAL • MEDICAL | Department of Pathology

β-Thalassemia Diagnosis


- **HPLC:** Elevated HB A2 diagnostic
- **Molecular analysis:** Complete beta globin coding sequence, the splice sites and other intronic regions known to harbor mutations, the proximal promoter region, and the 5' and 3'UTR regions
- Clinical sensitivity is up to 97% based on the ethnicity
- Beta globin del/dup in some cases (about 5%) where beta thalassemia is due to large deletions

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
HOSPITAL • MEDICAL | Department of Pathology



Sickle Cell Disease Diagnosis

- Sickledex test (Screening test)
 - Deoxygenated Hb-S is insoluble in a concentrated phosphate buffer solution and forms a turbid suspension
 - Normal Hemoglobin A and other hemoglobins remain in solution
 - It does not differentiate between Sickle Cell Disease (S/S) and Sickle Cell Trait (A/S)

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY

UNIVERSITY OF UTAH
HOSPITAL • MEDICAL | Department of Pathology

References and Acknowledgement

- Kaushansky K, Lichtman MA, Beutler E, Kipps TJ, Prchal J, Seligsohn U. *Willam's Hematology*. Ninth Edition. McGraw Hill Professional. 2015.
- Steinberg MH, Forget BG, Higgs DR, Nagel RL. *Disorders of Hemoglobin. Genetics, Pathophysiology, and Clinical Management*, 2nd ed. Cambridge University Press, New York, 2009
- Color Altas of Hemoglobin Disorders: A compendium Based on Proficiency Testing (2003), updated in 2010
- **Acknowledgement:**
 - Josef T. Prchal, M.D., Professor of Medicine, Genetics and Pathology. University of Utah and ARUP Laboratories
 - Dottie Hussie, M.T, ARUP Laboratories

ARUP LABORATORIES | NATIONAL REFERENCE LABORATORY | UNIVERSITY OF UTAH | HOSPITAL + RESEARCH | Department of Pathology

Department of Pathology

© 2014 ARUP Laboratories

ARUP IS A NONPROFIT ENTERPRISE OF THE UNIVERSITY OF UTAH AND ITS DEPARTMENT OF PATHOLOGY.