References

Monitoring the concentration of TNF antagonist drugs and detecting the development of anti-drug antibodies (ADA) enables physicians to optimize patient treatment over time. The test results help physicians understand underlying causes of suboptimal outcomes, make informed therapy choices, and provide more effective treatment to their patients. The use of TNF antagonists has revolutionized the treatment of patients with several non-infectious inflammatory disorders, including Crohn disease and ulcerative colitis.

50% of patients suffering from autoimmune and chronic inflammatory disorders experience treatment failure.

There are different approaches to managing patients with treatment failure to TNF antagonists; one approach is to monitor drug levels and anti-drug antibodies. A new guideline from the American Gastroenterological Association on therapeutic drug monitoring in inflammatory bowel disease recommends that physicians should perform reactive therapeutic drug monitoring to guide changes in TNF antagonist therapy.

Current methods for ADA detection are complicated by the fact that most TNF antagonists are antibodies and by the complexity of measuring antibodies against antibodies in non-functional binding assays. More importantly, all non-ARUP methods fail to differentiate binding from neutralizing ADA.

ARUP’s TNF antagonist drug and neutralizing antibody assays are cell-based bioassays that measure the ability of a drug to inhibit TNF. The assays also detect the presence of antibodies that neutralize drug activity. Emergence of these neutralizing antibodies in a patient leads to treatment failure. Other methods detect anti-drug antibodies that bind to the drug, but unlike ARUP's assays, these methods are not able to distinguish whether the antibodies neutralize drug activity or not.

The functional reporter gene assays were clinically validated for diagnosing and monitoring TNF antagonist treatment failure.

Currently, the ARUP assays are the only clinical assays available for the detection of biologically active TNF antagonist drugs and ADA with drug-neutralizing function, as recommended by the FDA.

The ARUP cell-based assay is inherently more reflective of the in vivo situation in tissue and circulation, under which TNF antagonists drugs are believed to function, and can easily be adapted for all known anti-TNF drugs.

How ARUP’s Test Works

This functional reporter gene assay uses the principles of iLite technology (licensed by Euro Diagnostica).

Antibody Detection

Some patients develop antibodies to the drug. In the presence of neutralizing antibodies, the reporter gene is turned on despite the presence of exogenous drug in the assay. The antibody titer is obtained by identifying the dilution point of a patient's serum where blocking of the drug activity is no longer observed.

Laboratory Testing

<table>
<thead>
<tr>
<th>ARUP test code and name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011248 Adalimumab Activity and Neutralizing Antibody</td>
</tr>
<tr>
<td>2013605 Adalimumab Activity with Reflex to Antibody</td>
</tr>
<tr>
<td>2008320 Infliximab and Infliximab-dyyb Activity and Neutralizing Antibody</td>
</tr>
<tr>
<td>2013612 Infliximab and Infliximab-dyyb Activity with Reflex to Antibody</td>
</tr>
</tbody>
</table>

Drug Measurement

Serum of a patient taking a TNF antagonist drug is mixed with TNF and added to the cells. If the drug is present, it will block the activity of TNF, decreasing luminescence. Serum concentration of biologically active TNF antagonist drug can be calculated using a calibration curve.