

Capillary Malformation-Arteriovenous Malformation

Capillary malformation-arteriovenous malformation (CM-AVM) syndrome is a disorder of the vascular system characterized by enlarged capillaries that appear as small, round dots on the skin. Some affected individuals also have fast-flow vascular anomalies, including arteriovenous malformations (AVMs) or arteriovenous fistulas (AVFs) in the skin, muscle, bone, spine, or brain. These lesions may cause life-threatening complications such as bleeding, congestive heart failure, or neurological consequences. Additional manifestations include lymphatic abnormalities, recurrent epistaxis (CM-AVM2), dermal telangiectasias (CM-AVM2), and bier spots (CM-AVM2). Genetic testing can confirm diagnosis of *RASA1*-related CM-AVM disorder (CM-AVM1) or *EPHB4*-related CM-AVM disorder (CM-AVM2) in individuals with clinical findings suggestive of CM-AVM.

Disease Overview

Incidence

- Approximately 1/20,000 for CM-AVM1
- Approximately 1/12,000 for CM-AVM2

Genetics

Genes

- EPHB4 (NM_004444) and RASA1 (NM_002890)
- See Genes Tested table for more information

Inheritance

- Autosomal dominant
- De novo variants
 - Approximately 33% of cases for RASA1
 - Approximately 20% of cases for EPHB4
- Somatic mosaicism has been described

Penetrance

- EPHB4: 93%¹
- RASA1: 90-99%

Featured ARUP Testing

Capillary Malformation-Arteriovenous Malformation (CM-AVM) Panel, Sequencing and Deletion/Duplication 3003634

Method: Massively Parallel Sequencing

Use to detect CM-AVM. If vascular symptoms are expanded beyond CM-AVM, consider testing for a hereditary vascular malformation disorder. If a familial sequence variant has been previously identified, targeted sequencing for that variant may be appropriate. Refer to the Laboratory Test Directory for additional information.

Test Interpretation

Methodology

This test is performed using the following sequence of steps:

- Selected genomic regions, primarily coding exons and exon-intron boundaries, from the targeted genes are isolated from extracted genomic DNA using a probe-based hybrid capture enrichment workflow.
- Enriched DNA is sequenced by massively parallel sequencing (MPS; also known as next generation sequencing [NGS]) followed by paired-end read alignment and variant calling using a custom bioinformatics pipeline. The pipeline includes an algorithm for detection of large (single exon-level or larger) deletions and duplications.
- Sanger sequencing is performed as necessary to fill in regions of low coverage and in certain situations, to confirm variant calls.
- Large deletion/duplication calls made using MPS are confirmed by an orthogonal exon-level microarray when sample quality and technical conditions allow.

Clinical Sensitivity

Clinical sensitivity is not well established but is estimated at 60%²

- EPHB4
 - An estimated 10% of CM-AVM is attributed to EPHB4
 - Detected in 15% of individuals with sporadic or familial CMs with or without fast-flow lesions¹
 - To date, all described pathogenic variants are detectable by sequencing
 - Clinical sensitivity of deletion/duplication analysis is unknown
- RASA1
 - An estimated 50% of CM-AVM attributed to RASA1
 - Detected in approximately 30% of consecutive cases with or without CMs,³ with higher detection rate in individuals with multifocal CMs
 - Detected in 70% of individuals with multifocal CMs with or without fast-flow lesions⁴
 - 92% of detectable *RASA1* pathogenic variants are sequence variants and 8% are large deletions/duplications

Analytic Sensitivity

Variant Class	Analytic Sensitivity (PPA) Estimate ^a (%) and 95% Credibility Region	Analytic Specificity (NPA)
SNVs	>99 (96.9-99.4)	>99.9
Deletions 1-10 bp ^b	93.8 (84.3-98.2)	>99.9

^aGenes included on this test are a subset of a larger methods-based validation from which the PPA values are derived.

^bVariants greater than 10 bp may be detected, but the analytic sensitivity may be reduced.

^cIn most cases, a single exon deletion or duplication is less than 450 bp and 3 exons span a genomic region larger than 700 bp.

bp, base pairs; NPA, negative percent agreement; PPA, positive percent agreement; SNVs, single nucleotide variants

Variant Class	Analytic Sensitivity (PPA) Estimate ^a (%) and 95% Credibility Region	Analytic Specificity (NPA)
Insertions 1-10 bp ^b	94.8 (86.8-98.5)	>99.9
Exon-level ^c deletions	97.8 (90.3-99.8) [2 exons or larger] 62.5 (38.3-82.6) [single exon]	>99.9
Exon-level ^c duplications	83.3 (56.4-96.4) [3 exons or larger]	>99.9

^aGenes included on this test are a subset of a larger methods-based validation from which the PPA values are derived.

^bVariants greater than 10 bp may be detected, but the analytic sensitivity may be reduced.

^cIn most cases, a single exon deletion or duplication is less than 450 bp and 3 exons span a genomic region larger than 700 bp.

bp, base pairs; NPA, negative percent agreement; PPA, positive percent agreement; SNVs, single nucleotide variants

Results

Result	Variant(s) Detected	Clinical Significance
Positive	Pathogenic <i>EPHB4</i> or <i>RASA1</i> variant detected	Confirms diagnosis of CM-AVM in a symptomatic individual
Negative	No known pathogenic <i>EPHB4</i> or <i>RASA1</i> variant detected	Reduces possibility of, but does not exclude, a diagnosis of CM-AVM
Inconclusive	Variant of uncertain clinical significance detected in <i>EPHB4</i> or <i>RASA1</i>	Unclear if variant is disease causing or benign

Limitations

- A negative result does not exclude a diagnosis of CM-AVM.
- Diagnostic errors can occur due to rare sequence variations.
- Interpretation of the test result may be impacted if the patient has had an allogeneic stem cell transplantation.
- The following will not be evaluated:
 - Variants outside the coding regions and intron-exon boundaries of targeted genes
 - Regulatory region and deep intronic variants
 - Breakpoints of large deletions/duplications
- The following may not be detected:
 - Deletions/duplications/insertions of any size by MPS
 - Large duplications less than 3 exons in size
 - Noncoding transcripts
 - Some variants, due to technical limitations in the presence of pseudogenes or repetitive or homologous regions
 - Low-level somatic variants

Genes Tested

Gene	MIM#	Disorder	Inheritance
EPHB4	600011	CM-AVM2 Lymphatic malformation 7	AD
RASA1	139150	CM-AVM1	AD

AD, autosomal dominant

References

- 1. Amyere M, Revencu N, Helaers R, et al. Germline loss-of-function mutations in EPHB4 cause a second form of capillary malformation-arteriovenous malformation (CM-AVM2) deregulating RAS-MAPK signaling. *Circulation*. 2017;136(11):1037-1048.
- 2. Bayrak-Toydemir P, Stevenson D. Capillary malformation-arteriovenous malformation syndrome. In: Adam MP, Ardinger HH, Pagon RA, et al, editors. GeneReviews, University of Washington; 1993-2020. [Last update: Sep 2019; Accessed: Nov 2020]
- 3. Wooderchak-Donahue W, Stevenson DA, McDonald J, et al. RASA1 analysis: clinical and molecular findings in a series of consecutive cases. *Eur J Med Genet*. 2012;55(2):91-95.
- 4. Revencu N, Boon LM, Mendola A, et al. RASA1 mutations and associated phenotypes in 68 families with capillary malformationarteriovenous malformation. *Hum Mutat*. 2013;34(12):1632-1641.

Related Information

Hereditary Hemorrhagic Telangiectasia - HHT

ARUP Laboratories is a nonprofit enterprise of the University of Utah and its Department of Pathology. 500 Chipeta Way, Salt Lake City, UT 84108

(800) 522-2787 | (801) 583-2787 | aruplab.com | arupconsult.com Content Review December 2020 | Last Update July 2023

© 2023 ARUP Laboratories. All Rights Reserved.

Client Services - (800) 522-2787